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A B S T R A C T

Lightweight and smart exoskeletons offer the potential to improve mobility in children. State-of-the-art
pediatric exoskeletons are typically clinic-based since they are either tethered or portable but cumbersome
and their design is often not optimized across a range of environments and users. To facilitate pediatric
exoskeleton in community settings, we first proposed an actuator optimization framework that identified the
optimal design parameters for both motor and transmission while minimizing the actuator mass and satisfying
the output torque, speed, bandwidth, and resistance torque requirements. Guided by the optimization results,
we customized a simple, lightweight actuator that met all mechatronic constraints for our portable exoskeleton
(1.78 kg unilateral). Secondly, we adopted deep learning (Long Short Term Memory) based on gait phase
estimation to facilitate stable control for community use. The models accurately estimated the gait phase on
irregular walking patterns (accuracy 94.60%) without explicit training in children (typically developing and
with cerebral palsy). The controller results demonstrated an elevated ability to adapt to the irregular gait
patterns of the child with cerebral palsy. The experimental results in the child with typical development and
four healthy adults demonstrated accurate assistive torque tracking performance (accuracy 97.00%) at different
walking speeds (i.e., under uncertain torque to wearers). This work presented a holistic solution that includes
both hardware innovation (actuator optimization framework) and software innovation (deep learning-based
control) towards the paradigm shift of pediatric exoskeletons from clinic to community setting.
. Introduction

Cerebral Palsy (CP) is a chronic health illness with the highest
orldwide rehabilitation burden, according to the World Health Or-
anization, due to its high prevalence, severity, and early onset. It
s a disorder that limits mobility and reduces the quality of life [1].
ait pathologies from CP cause inflated metabolic costs and decreased
alking speed [2]. Pediatric exoskeletons have shown potential in

mproving the mobility of children with CP in clinic settings [3,4].
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Pediatric wearable robots, based on their mechanical design, can be
broadly classified into two groups: end-effector robots [4–7], and joint-
based exoskeletons [3,8–10], as shown in Fig. 1. The end-effector robots
are attached to users at one distal end, and the force generated at the
distal interface influences the other joints. However, the robotic joints
do not align with human joints, and isolating the movement of a single
joint is challenging [5,6]. The joint-based exoskeletons ameliorate these
limitations since they align with human knee joint axes [3,8,10].
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Fig. 1. Pediatric exoskeletons. Our (F) knee exoskeleton is the most lightweight
of personal mobility devices. (A) NIH semi-tethered exoskeleton [3]. (B) ATLAS
exoskeleton. (C) Soft material robot [11] (D) WAKE-Up exoskeleton [9]. (E) NIH
portable exoskeleton [10]. (F) Our knee exoskeleton. (G) MIT pediatric robots [5].
(H) Cable-tensioning platform [6]. (I) HKAF Exoskeleton-Plus-Walker [4]. (J) Trexo
robotics.

Furthermore, they enable the training of specific muscles and improve
mobility by controlling the movement of the robot joints [10].

Although joint-based exoskeletons have shown great potential in
clinical settings, the state-of-the-art joint-based pediatric exoskeletons
are either tethered [3] or portable but cumbersome, heavy, and/or
not compliant to natural human movement [9]. Soft material-based
exoskeletons such as [11,12] are compliant but tethered. Therefore,
to enhance mobility and independence in children with CP, the need
for pediatric knee exoskeletons in community settings is becoming
imperative and is a new frontier in wearable robots. To realize the
objective of community-based pediatric rehabilitation, it requires a
holistic solution that addresses the challenges in design (e.g., actuator
optimization) and control (e.g., high-performance control).

The first challenge of community-based pediatric exoskeletons is
individualized actuator design that satisfies multiple constraints. First,
biomechanics, e.g., body mass, torque, and joint velocity, vary dramat-
ically during child growth [13]. Second, multiple design constraints
(typically conflicting) must be considered to satisfy children’s kinemat-
ics and kinetics requirements [14]. For example, exoskeletons should
provide sufficient torque while being lightweight and compliant (not
impede natural movements). Third, the actuator mass should be as light
as possible. Since the energetic penalty of walking increases propor-
tionally with mass as a percentage of body weight, the extra weight
brought by the exoskeleton can substantially increase the energetic
cost of walking. Moreover, the influence of exoskeleton weight is more
notable in children than adults due to their weight differences. The
exoskeleton will alter the children’s lower-limb kinematics if it exceeds
the unilaterally mass 2.5 kg threshold [15]. Typically, it is considered
that exoskeleton mass should not exceed 10% of the users’ body mass.
Recent interest has been in transmission optimization for actuators
in exoskeletons (e.g., optimization of spring stiffness for series elastic
actuation (SEA) [16]). There is no prior work on optimization of both
motor and transmission for both series elastic actuators (with spring)
and quasi-direct drive actuators (without spring) [17]. In addition,
specialized methods guiding optimal actuator design accommodating
child growth are also absent.

The second challenge in the community-based pediatric exoskeleton
is the continuous phase controller to abrupt changes in gait. State-
of-the-art controllers rely on the user’s state to accurately time the
assistance of the exoskeleton and can be classified into two groups:
Finite State Machine (FSM)-based methods [18,19] and oscillator-based
methods [20]. FSM-based methods rely on handcrafted transition rules
based on accurately identifying discrete gait events such as heel-strike,
toe-off, and swing phase. However, these methods are suitable only
2

for steady-state walking, and may have difficulty adapting to changes
in gait speed. On the contrary, oscillator-based methods continuously
identify gait phases based on joint angles without relying on gait
events. However, these methods suffer from delayed adaptation to the
changes in gait speed, thus lacking the ability for stride-by-stride gait
phase estimation, consequently hindering stability. Thus, state-of-the-
art methods lack the ability towards abrupt changes in gait speeds and
patterns, warranting the need for gradual changes in walking speeds
to maintain stability [21,22], rendering them unsuitable for pediatric
exoskeleton control for community use where such abrupt changes are
commonplace. Recent advancements in deep learning offer promising
solutions to learn complex nonlinear relationships commonly observed
in kinematic data of human gait [21]. [23–25] demonstrated that
deep learning could estimate hip gait phases or moments for healthy
adults. Because their algorithms, inputted by inertial measurement
units (IMUs), can capture the dominant motion of healthy adults in the
sagittal plane during walking. However, children with cerebral palsy
have non-sagittal plane movements, so it is still unknown whether
deep learning for stable gait phase estimation for pediatric exoskeleton
control is effective.

To enable the use paradigm of pediatric exoskeletons to shift from
clinic to community settings, we proposed solutions to address the
aforementioned two fundamental challenges in terms of actuator opti-
mization and deep learning-based continuous phase controller. Firstly,
we proposed a generalized method for optimizing actuators of exoskele-
tons to accommodate children of varying body masses. Our proposed
method identified the optimal actuator design parameters for both
motor and transmission while minimizing the actuator mass and satis-
fying the design requirements for output torque, speed, bandwidth, and
backdrive torque. Guided by the optimization results, we customized a
simple, lightweight actuator that met all mechatronic constraints for
our portable exoskeleton, which is lightweight (1.78 kg unilateral),
compliant, fully portable, and has a high bandwidth (40.3 Hz). Sec-
ondly, we developed a deep learning-based (LSTM) control method to
improve the performance of exoskeletons in response to changes in gait
speed. The proposed method accurately estimated the gait phase in
abrupt changes in gait speed (with non-cyclic motion) without being
explicitly trained on such data and also detected gait phases of children
with cerebral palsy with non-sagittal plane motion. Furthermore, it
automatically identified events of interest from raw inertial signals
of the lower limbs, thus eliminating the need for cumbersome fea-
ture extraction and complex handcrafting of transition rules crucial
for efficacy in commonly used finite-state machine-based controllers.
Experiments with two children (one child with CP and one typically
developing child) and four healthy adults show the effectiveness of the
proposed method.

2. Mechatronics design of a portable pediatric knee exoskeleton

In this section, we present a lightweight and compliant pediatric
knee exoskeleton (Fig. 2) based on the proposed actuation optimiza-
tion method (Section 3). It illustrates an actuator design instance to
demonstrate the feasibility and efficiency of the proposed user-specific
optimization principles.

2.1. Mechanical design, electronics, and sensing system

Our exoskeleton comprises actuators, support frames for the thigh
and shank, and a waist-mount system. To minimize mass and size, our
transmission design uses simple planetary gears instead of complicated
bevel gears [26] or chain mechanism [3]. The support frames fasten
to limbs through cuffs with adjustable wearable straps. The 3D-printed
cuffs and textile straps are adjustable to ensure a good fit for a large
range of body dimensions. Two IMU sensors are worn on each leg, one
on the thigh and one on the calf. One IMU sensor worn on the thigh
was placed between the two thigh braces (middle thigh, sagittal plane)
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Fig. 2. Lightweight and portable pediatric knee exoskeleton for use in the community setting. It weighs 1.78 kg unilaterally (2.95 kg bilaterally) and incorporates compact control
electronics, mechanical structures, inertial measurement unit (IMU) sensors (for gait detection), wearable structures, and batteries.
Table 1
Comparison of pediatric exoskeletons.

Pediatric exoskeleton Unilateral mass (kg) Actuator torque (N m) Exoskeleton torque density (N m/kg) Gear ratio Actuator inertiaa (kg cm2) Bandwidth (Hz)

MIT 2015 >10 7.21 Tethered system 138:1 105.50 Medium
NIH 2017 [3] 1.75b 16.10 Tethered system 311.5:1 537.56 Medium
NIH 2021 [10] 2.59 15.00 5.79 153:1 779.5 Medium (12)
NAU 2018 [2] 1.85 24.00 12.97 331:1 976.2 Medium
Ours (optimized) 1.78 30.00 15.79 9:1 65.2 High (40.3)

a Actuator inertia = Motor inertia × gear ratio2.
b Semi-tethered system. It is the mass of the device brace and actuator. and [2] are pediatric ankle exoskeletons.
and at the thigh central axis (middle thigh, coronal plane). Another IMU
sensor was placed between the bottom of the shank brace and the ankle
(sagittal plane) for the calf. A customized torque sensor (resolution:
±0.1 N m, full scale: ±40 N m) measures the human–robot interaction
torque and provides feedback for torque control. The customized torque
sensor connects the optimized actuator to the shank support frame.
A microcontroller (Teensy 4.1, 600 MHz) executes two outer loops of
the three-stage controller hierarchy and handles the high-level walking
control and mid-level PID torque control. Additionally, it communicates
with the low-level current controller and encoder assemblies mounted
on each actuator (Section 2.2) using the CAN bus protocol. A 14-bit
magnetic rotary encoder is built into the actuator to measure the rotor’s
position, as well as an embedded microcontroller (STM32F407) that
executes low-level motor control.

2.2. High torque density motor for optimized actuators

To serve our target population of 13–15-year-old children (45 ± 10
kg body mass), the proposed optimization framework (from Section 3)
was used to design optimal actuators. Our customized actuator consists
of a brushless DC motor with a gap radius of 0.039 m (3.3 N m peak
torque) and a 9:1 planetary gear. It is powered by a nominal voltage of
48 V, enabling a peak output speed of 38.38 rad/s (nominal speed 26.17
rad/s) and 30 N m peak torque (11 N m nominal torque). The radial
space resulting from a larger gap radius [27] was used to house the
gearbox, which reduced the axial length of the actuator, thus making
it compact. In addition, the small gear ratio significantly increased
the compliance and bandwidth of the optimized actuator. Thus, the
optimized actuator is more compact than our previous actuator [10,28].
Compared with the state-of-the-art pediatric exoskeletons in Table 1,
3

the optimized exoskeleton has the highest torque density and smallest
actuator inertia.

3. User-specific actuator optimization

To solve the challenges in actuator design of pediatric exoskeleton,
this section formulated an optimization framework incorporating both
motor and transmission design for SEA and quasi-direct-drive actuation
paradigms [17]. The proposed optimization method can be general-
ized across exoskeleton size to enable the design of pediatric robots
whose size requirements change with child growth and development.
User-specific optimized actuator design is critical to maximizing the
dynamics of the human–robot interaction. So, in this section, we intro-
duced the details of actuator optimization in terms of the human–robot
interaction model, geometric scaling laws, optimization constraints,
and the results of actuator optimization.

3.1. Actuator design optimization framework

The proposed actuator design optimization framework is illustrated
in Fig. 3, where the objective function (as shown in (1) and Fig. 3(B))
minimizes the actuator mass 𝑚(𝑟𝑔 , 𝑛) to reduce the negative effect from
exoskeleton mass with the optimization parameters, i.e., the motor gap
radius 𝑟𝑔 and the gear ratio 𝑛 (as shown in Fig. 3(C)). Our optimization
method considered multiple parameters (more than 10 parameters)
as shown in Tables 3 and 4. Because many actuator parameters are
related to (i.e., motor scaling laws) the motor gap radius and the gear
ratio, our method also optimized multiple other actuator parameters
(e.g., the moment of inertia 𝐽 , the motor damping 𝑏 , the motor
𝑚 𝑚
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Fig. 3. Actuator optimization framework. (A) Pediatric gait kinetics of the knee. (B)
Actuator optimization to minimize the actuator mechanical mass. (C) Optimization
parameters: motor gap radius 𝑟𝑔 and motor gear ratio 𝑛. (D) Human–robot interaction
model. Tables 2 and 3 summarize the definitions of parameters.

Table 2
The nomenclature of the symbols in (1).

Symbols Physical meaning

𝑚 Actuator mass
𝑟𝑔 Motor gap radius
𝑛 Gear ratio
𝜏𝑎,𝑟𝑒𝑞 Required output torque of actuator
𝜏𝑎,𝑚𝑎𝑥(𝑟𝑔 , 𝑛) Maximum output torque of actuator
𝜔𝑟𝑒𝑞 Required angular velocity of actuator
𝜔𝑚𝑎𝑥(𝑟𝑔 , 𝑛) Maximum angular velocity of actuator
𝛺𝑛,𝑟𝑒𝑞 Required natural frequency under torque control
𝛺𝑛(𝑟𝑔 , 𝑛) Natural frequency under torque control
𝜏𝑏,𝑟𝑒𝑞 Required backdrive torque of actuator
𝜏𝑏,𝑚𝑎𝑥(𝑟𝑔 , 𝑛) Maximum backdrive torque of actuator

terminal resistance 𝑅, the motor terminal inductance 𝐿, the back EMF
constant 𝑘𝑏 via optimizing those two parameters.

The actuator optimization problem is formulated as follows

minimize
𝑟𝑔 ,𝑛

𝑚(𝑟𝑔 , 𝑛)

subject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜏𝑎,𝑟𝑒𝑞 < 𝜏𝑎,𝑚𝑎𝑥(𝑟𝑔 , 𝑛)
𝜔𝑟𝑒𝑞 < 𝜔𝑚𝑎𝑥(𝑟𝑔 , 𝑛)

𝛺𝑛,𝑟𝑒𝑞 < 𝛺𝑛(𝑟𝑔 , 𝑛)
𝜏𝑏,𝑟𝑒𝑞 > 𝜏𝑏,𝑚𝑎𝑥(𝑟𝑔 , 𝑛)

(1)

Since physical characteristics such as height and weight of children
are vital for customizing exoskeleton systems, the constraints are se-
lected based on the requirements of gait kinetics, shown in Fig. 3(A),
and the dynamic human–robot interaction model Fig. 3(D). The gait
kinetics is adopted to provide the torque 𝜏𝑎,𝑟𝑒𝑞 , angular velocity 𝜔𝑟𝑒𝑞 ,
natural frequency (bandwidth) 𝛺𝑛,𝑟𝑒𝑞 and backdrive torque 𝜏𝑏,𝑟𝑒𝑞 . The
human–robot interaction model is proposed to illustrate the functions
including 𝜏𝑎,𝑚𝑎𝑥(𝑟𝑔 , 𝑛), 𝜔𝑚𝑎𝑥(𝑟𝑔 , 𝑛), 𝛺𝑚𝑎𝑥(𝑟𝑔 , 𝑛) and 𝜏𝑏,𝑚𝑎𝑥(𝑟𝑔 , 𝑛). With the
output of the gait kinetics and kinematics (𝜏𝑎,𝑟𝑒𝑞 , 𝜔𝑟𝑒𝑞 , 𝛺𝑛,𝑟𝑒𝑞 and 𝜏𝑏,𝑟𝑒𝑞)
and human–robot interaction model (𝜏𝑎,𝑚𝑎𝑥(𝑟𝑔 , 𝑛), 𝜔𝑚𝑎𝑥(𝑟𝑔 , 𝑛), 𝛺𝑚𝑎𝑥(𝑟𝑔 , 𝑛)
and 𝜏𝑏,𝑚𝑎𝑥(𝑟𝑔 , 𝑛)), the constraints can be formulated for the actuator
optimization part (Fig. 3(B)). The rest of parameters are defined in
Tables 2 and 3. Besides the mass of actuators, other alternative objec-
tive functions (e.g., energy consumption) are also feasible using this
framework.

The required torque 𝜏𝑎,𝑟𝑒𝑞 is body mass-specific and related to the
peak knee moment. The peak knee moment comes from publicly avail-
able datasets of overground walking measured at self-selected walking
4

Fig. 4. (A) A quadratic curve to fit the peak knee moment at different body mass. The
blue dots are the peak knee moments from [3,14,29] including data of 61 individuals.
Block diagrams of (B) closed-loop torque control for the pediatric knee exoskeleton, (C)
maximum torque, (D) exoskeleton maximum speed, (E) exoskeleton backdrive torque.

speeds for typically developing children [29], children with cerebral
palsy [3,14]. The required angular velocity 𝜔𝑟𝑒𝑞 is set as 10.7 rad/s,
corresponding to the maximum angular velocity. The natural frequency
𝛺𝑛,𝑟𝑒𝑞 is set as 20 Hz for human walking as required. The maximum
backdrive torque 𝜏𝑏,𝑚𝑎𝑥 of the unpowered exoskeleton in a walking
cycle is 4 N m.

We proposed a quadratic curve (Fig. 4(A)) to fit the relationship
between the age and knee moment 𝑀𝑘𝑛𝑒𝑒,𝑚𝑎𝑥, where the age for the
adult dataset is set as 18. The fitted equation is formulated as

𝑀𝑘𝑛𝑒𝑒,𝑚𝑎𝑥 = −0.0025𝑊 𝑒𝑖𝑔ℎ𝑡2 + 0.8277𝑊 𝑒𝑖𝑔ℎ𝑡 − 5.9366

𝜏𝑎,𝑟𝑒𝑞 = 0.3𝑀𝑘𝑛𝑒𝑒,𝑚𝑎𝑥 × 2 (2)

where the torque 𝜏𝑎,𝑟𝑒𝑞 can be set as 50% of the peak knee extension
moment with a safety factor of 2. User-specific optimized actuator
design is critical to maximizing the dynamics of the human–robot
interaction. So, in the remaining parts of this section, we introduced
the details of actuator optimization in terms of the human–robot inter-
action model, geometric Scaling Laws, optimization constraints, and the
results of actuator optimization. The proposed optimization framework
can be generalized across exoskeleton size to enable the design of
pediatric robots whose size requirements change with child growth and
development.

3.2. Human-robot interaction model of torque control

Our optimization framework takes the human–robot interaction
into consideration. The human–robot interaction model is given in
Fig. 3(D). By comparing the open-loop bode plots between theoretical
(Fig. 3(D)) and experimental results (open-loop frequency response of
our exoskeleton), our proposed wearable robot model matches the ex-
perimental result with high accuracy. In Fig. 3(D), the human exoskele-
ton system consists of the electromechanical model of the actuator,
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transmission, and human limbs. The quasi-direct drive actuator can
be approximated as an equivalent electronic motor (consisting of a
resistor, an inductance, and an ideal motor), motor’s mechanical part,
and a gearbox. The motor was modeled as

𝑉 = 𝐿𝐼𝑠 + 𝑅𝐼 + 𝑉𝑏,

𝑉𝑏 = 𝑘𝑏𝜃𝑚𝑠,

𝜏𝑚 = 𝑘𝑡𝐼,

𝜏𝑚 = 𝐽𝑚𝜃𝑚𝑠
2 + 𝑏𝑚𝜃𝑚𝑠 + 𝜏1,

(3)

where the nomenclature included 𝑉 winding voltage, 𝑉𝑏 back electro-
motive force (EMF) voltage, 𝑘𝑏 back EMF constant, 𝑘𝑡 torque constant,
𝐿 terminal inductance of the motor, 𝑅 terminal resistance of the motor,
𝐼 motor current, 𝐽𝑚 moment of inertia of the rotor, 𝜃𝑚 motor angle,
𝜏𝑚 motor output torque, 𝑏𝑚 motor damping coefficient, 𝜏1 gear input
torque.

The gearbox is used to magnify the torque 𝜏1 by reducing the output
angle. Therefore, we have

𝜃𝑚 = 𝜃1 = 𝑛𝜃2, 𝜏2 = 𝑛𝜏1 (4)

where 𝜃1 and 𝜃2 are the rotation angle of the input and output shaft,
and 𝜏2 denotes the torque applied to the output shaft. The wearable
structure of exoskeleton also serves as a transmission by transferring
the actuator generated torque to the wearer. In our knee exoskeleton,
this transmission includes braces, straps, and rigid linkages in our knee
exoskeleton. The wearable structure is modeled as

𝜏2 = 𝑘𝑐 (𝜃2 − 𝜃ℎ) + 𝑏𝑐 (𝜃2 − 𝜃ℎ)𝑠, 𝜏𝑎 = 𝜏2 (5)

where 𝑘𝑐 is the human-exoskeleton transmission stiffness, 𝑏𝑐 is the
transmission damping factor, 𝜏𝑎 is the exoskeleton output torque, and
𝜃ℎ is the human knee angle. By comparing the open-loop bode plots
between theoretical (open loop transfer function) and experimental
results (open-loop frequency response of our exoskeleton), our pro-
posed wearable robot model matches the experimental result with high
accuracy.

The block diagram of the torque control illustrated in Fig. 4(B)
is implemented to assist human walking using the knee joint angles
(Section 3.4). The input is the torque reference 𝜏𝑟, and the output is the
actual output torque 𝜏𝑎 applied to the human. Since the transmission
damping coefficient 𝑏𝑐 is small in practice, it can be set as zero. To
investigate the torque control bandwidth, we set the input of the human
knee angle 𝜃ℎ to zero. The closed-loop transfer function of torque
control is given by
𝜏𝑎(𝑠)
𝜏𝑟(𝑠)

|

|

|

|𝜃ℎ(𝑠)=0
=

𝑘𝑝𝑘𝑐𝑘𝑡𝑛

𝑛2𝑅𝐽𝑚𝑠2 + 𝑛2(𝑅𝑏𝑚 + 𝑘𝑏𝑘𝑡)𝑠 + 𝑘𝑐 (𝑅 + 𝑘𝑝𝑘𝑡𝑛)
(6)

where 𝑘𝑝 and 𝑘𝑖 are proportional and integral control gains, respec-
tively. The integral gain 𝑘𝑖 is set as zero for simplicity, and winding
inductance 𝐿 is set as 0 for its negligible value.

The maximum angular velocity 𝜔𝑚𝑎𝑥(𝑟𝑔 , 𝑛) can be obtained from the
angular velocity 𝜔, which is given by

𝜔(𝑠) =
𝑉 𝑘𝑡

𝑛(𝑅𝑏𝑚 + 𝑘𝑏𝑘𝑡 + (𝐽𝑚𝑅 + 𝐿𝑏𝑚)𝑠 + 𝐽𝑚𝐿𝑠2)
. (7)

The natural frequency 𝛺𝑛 of closed-loop control is

𝛺𝑛 =

√

𝑘𝑐 (𝑅 + 𝑘𝑝𝑘𝑡𝑛)

𝑛2𝑅𝐽𝑚
. (8)

It is positively correlated with torque constant, and negatively
orrelated with gear ratio and moment of inertia.

The compliance is estimated from the backdrive torque, i.e.,
𝑏(𝑟𝑔 , 𝑛), under unpowered conditions. The block diagram is shown in
ig. 4(E). The input is human knee angle 𝜃ℎ, and the output is the

actuator output torque 𝜏𝑏. With the motor voltage 𝑉 set to zero, the
transfer function can be reduced to
𝜏𝑏(𝑠) |

|

|

=
−𝑘𝑐𝑛2𝑠[𝐽𝑚𝑅𝑠 + (𝑅𝑏𝑚 + 𝑘𝑏𝑘𝑡)] . (9)
5

𝜃ℎ(𝑠) |𝑉 =0 𝑛2𝑠[𝐽𝑚𝑅𝑠 + (𝑅𝑏𝑚 + 𝑘𝑏𝑘𝑡)] + 𝑅𝑘𝑐
Table 3
The relationship between motor parameters and gap radius.

Symbols Motor parameters Relationship with Our optimized
gap radius (𝑟𝑔) motor

𝑟𝑔 Gap radius (m) – 0.039
𝑟𝑚 Motor radius (m) 𝑟𝑚 ∝ 𝑟𝑔 0.048
𝑀𝑚 Mass (kg) 𝑀𝑚 ∝ 𝑟𝑔 0.566
𝐽𝑚 Moment of inertia (kg m2) 𝐽𝑚 ∝ 𝑟3𝑔 8.05E–6
𝑏𝑚 Motor damping (N m s/rad) – 0.01
𝑘𝑡 Torque constant (N m/A) 𝑘𝑡 ∝ 𝑟𝑔 0.232
𝑘𝑏 Back EMF constant (V s/rad) 𝑘𝑏 ∝ 𝑟𝑔 0.04
𝑅 Terminal resistance (Ω) 𝑅 ∝ 𝑟−1𝑔 0.94
𝐿 Terminal inductance (H) 𝐿 ∝ 𝑟−1𝑔 7.3E–4
𝑉𝑚𝑎𝑥 Maximum voltage (V) – 48
𝐼𝑚𝑎𝑥 Maximum current (A) 𝐼𝑚𝑎𝑥 ∝ 𝑟𝑔 7
𝜏𝑚 Motor torque (N m) 𝜏𝑚 ∝ 𝑟2𝑔 1.22
𝜏𝑚,𝑚𝑎𝑥 Maximum motor torque (N m) 𝜏𝑚,𝑚𝑎𝑥 ∝ 𝑟2𝑔 3.33

As human motion is mostly low frequency (𝜔 → 0) and the gear
ratio 𝑛 is small, the magnitude of

|

|

|

|

𝜏𝑏(𝑠)
𝜃ℎ(𝑠)

|

|

|

|𝑠=𝑗𝜔
goes to zero with de-

reasing 𝜔 and 𝑛. Therefore, a system with lower frequency, smaller
otor, and lower gear ratio produces lower backdrive torque and better

ompliance.
In summary, low backdrive torque and high natural frequency are

he most critical requirements of an exoskeleton. However, there are
rade-offs between these two: (1) maximizing the compliance requires

low gear ratio and a small motor with a low moment of inertia
nd damping coefficient; (2) maximizing the output torque requires
high gear ratio and a high torque constant; (3) maximizing the

peed requires a low gear ratio and a low back-EMF constant. To form
he basis of this optimization, we quantified the effect of motor size
nd gear ratio on the output torque, speed, bandwidth, and backdrive
orque in the following subsection.

.3. Geometric scaling laws for actuator optimization

In addition to the constraints brought forward by the dynamic
uman–robot interaction, the actuator’s geometric features (i.e., scaling
f elements) also play essential roles in the optimization problem. This
ubsection illustrates how the scaling laws of an actuator, specifically
eometric factors of motors and gear ratio of the transmission, influence
he optimization problem in terms of the actuator mass, torque, and
orque density. It also further explains why we can select the motor
ap radius 𝑟𝑔 and the gear ratio 𝑛 as the optimization parameters.

.3.1. Geometry consideration of high torque density motors
The performance of a high torque density motor with a small

oment of inertia can be described by the gap radius of the motor
ith fixed rotor and stator radial thickness. The relationship between

he gap radius and the motor parameters is shown in Table 3, with the
arameters of our prototype motor provided as a point of reference.
rom [27], we have

𝑚,𝑚𝑎𝑥(𝑟𝑔) ∝ 𝑟2𝑔 , (10)

𝑀𝑚(𝑟𝑔) ∝ 𝑟𝑔 , (11)

𝜏𝑚,𝑚𝑎𝑥(𝑟𝑔 )
𝑀𝑚(𝑟𝑔)

∝
𝑟2𝑔
𝑟𝑔

= 𝑟𝑔 . (12)

These equations indicate that the maximum torque, mass, and
torque density of a motor are all related to motor gap radius (𝑟𝑔). Thus
the torque density of a motor is not constant for motors with different
dimensions, and therefore, the geometric factor (gap radius 𝑟𝑔) can be

considered as a design variable.
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Table 4
The relationship between motor performance and gear ratio.

Symbols Motor parameters Relationship with gear ratio (𝑛)

𝜏𝑎,𝑚𝑎𝑥 Maximum output torque 𝜏𝑎,𝑚𝑎𝑥 ∝ 𝑛
�̇�2,𝑚𝑎𝑥 Maximum output speed �̇�2,𝑚𝑎𝑥 ∝ 1∕𝑛
𝜔𝑚𝑎𝑥 Bandwidth 𝜔𝑚𝑎𝑥 ∝ 1∕𝑛
𝜏𝑏,𝑚𝑎𝑥 Maximum backdrive torque 𝜏𝑏,𝑚𝑎𝑥 ∝ 1∕𝑛

Fig. 5. Optimization constraints. (A) The maximum output torque with varied gear
ratio and motor gap radius. The maximum torque increases when the gear ratio and
the motor gap radius increase. (B) The maximum speed with varied gap radius and
gear ratio. The maximum angular velocity is reached with the same gear ratio as the
gap radius nears 0.05 m. The maximum angular velocity decreases with increasing of
gear ratio. (C) High-frequency torque control requires a low gear ratio and high motor
gap diameter. (D) Low resistance torque (high backdrivability) is ensured by a small
motor gap diameter and low gear ratio.

3.3.2. Gear ratio consideration of the exoskeleton system
In this analysis, we assume that the gear ratio does not affect the

mass of the actuator. This assumption is reasonable since the gearbox
only makes up a minor part of the total mass of the actuator. From
the results of Section 3.2, the relationship between motor performance
and gear ratio is shown in Table 4. As the gear ratio increases, the
output torque increases, while the output speed, bandwidth of torque
control, and compliance decrease. The gear ratio of the transmission
greatly affects the actuator performance. For this reason, we consider
it as another core optimization parameter in our actuator design.

3.4. Optimization constraints

In this subsection, we elaborate on the four motor performance con-
straints for the actuation optimization problem: (1) maximum output
torque, (2) maximum output speed, (3) bandwidth of torque control,
and (4) backdrive torque.

3.4.1. Constraint of maximum output torque
To estimate the maximum output torque with respect to the gap

radius and gear ratio, the block diagram in Fig. 4(C) is used to assume
a fixed output angle.

We set the input voltage 𝑉 as its maximum value 𝑉𝑚𝑎𝑥 = 48V
and set the maximum output torque 𝜏𝑎,𝑚𝑎𝑥 as the peak value of the
output torque 𝜏𝑎. The saturation current is set to 𝐼𝑚𝑎𝑥 corresponding
to the appropriate gap radius. Fig. 5(A) shows that maximum torque
increases when gear ratio and gap radius increase. The 𝜏𝑎,𝑚𝑎𝑥(𝑟𝑔 , 𝑛) in
(1) is obtained by finding the maximum output torque in Fig. 5(A) given
a specific gap radius and gear ratio.
6

Fig. 6. Constraint contours in the optimization parameter space. The body mass-
specific optimal solutions are found at the point that has the most negligible mass
in the region bounded by the four constraint contours. (B) The optimal gap radius
increases monotonically for children weighted from 10 kg to 100 kg, while the optimal
gear ratio increases for weights between 10 and 30 kg and then decreases for weighted
between 30 and 100 kg.

3.4.2. Constraint of maximum output speed
To estimate the maximum output velocity for different gap radii

and gear ratios, we used the block diagram in Fig. 4(D) to assume
a free output rotation. We set input voltage V as Fig. 5(B) illustrates
that maximum angular velocity decreases as gear ratio increases. The
maximum angular velocity is reached as gap radius nears 0.05 m,
assuming constant gear ratio. The 𝜔𝑚𝑎𝑥 in (1) is obtained by finding
the maximum output speed given a specific gap radius and gear ratio,
as shown in Fig. 5(B).

3.4.3. Constraint of natural frequency of torque control
The bandwidth of torque control with different gap radii and gear

ratios relies on the natural frequency. Natural frequency 𝛺𝑛 from (8)
is shown in Fig. 4(E), where 𝑘𝑝 = 1. When the gap radius decreases
and the gear ratio increases, the natural frequency decreases. 𝛺𝑛(𝑟𝑔 , 𝑛)
in (1) is obtained by finding the bandwidth corresponding to a 1-Hz
walking cycle in Fig. 5(C) given a specific gap radius and gear ratio.

3.4.4. Constraint of compliance
Average backdrive torque 𝜏𝑏,𝑎𝑣𝑔 is simulated by the block diagram

in Fig. 4(E) and the result is shown in Fig. 5(D). The input is the knee
angle trajectory 𝜃ℎ at 1-Hz. As the gap radius and gear ratio increase,
the backdrive torque increases. 𝜏𝑏,𝑎𝑣𝑔(𝑟𝑔 , 𝑛) in (1) is obtained by finding
the backdrive torque at 1 Hz in Fig. 5(D) given a specific gap radius
and gear ratio.

3.5. Constrained optimization results

The objective function and constraint contours are plotted in
Fig. 6(B). The minimum value is found in the area bounded by the four
constraint contours. For example, the optimal solution for a 50-kg child
lies at the intersection of the required torque contour (𝜏𝑎,𝑟𝑒𝑞 = 17.5 N m)
and the maximum backdrive torque contour (𝜏𝑏,𝑚𝑎𝑥 = 4 N m). This leads
to minimal actuator mass and the corresponding motor gap radius.

Finally, the body mass-related optimal result is shown in Fig. 6(B).
The optimal motor gap radius monotonically increased from 0.017 to
0.072 m as the mass increased. The optimal gear ratio increased from
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Fig. 7. (A) Long Short Term Memory (LSTM) networks for robust gait phase estimation during overground walking in children with CP and typically developing children. Linear
acceleration and angular velocity from IMU sensors mounted on the thigh, shank, and pelvis were segmented in 100 ms or 200 ms windows with a step size of 1 and were
used to train the LSTM model to estimate the gait phase. The predicted gait phase can then be used to generate appropriate assistive torque. The proposed method can be easily
implemented in real-time. (B) Control diagram of torque controller for pediatric knee exoskeleton assistance. �̇�ℎ and 𝜃ℎ are knee angular velocity and angles measured by the IMU
sensors in real-time.
5.9 ∶ 1 to 10.8 ∶ 1 as the body mass increased from 10 to 30 kg.
The optimal gear ratio decreased from 10.8 ∶ 1 to 4.2 ∶ 1 as the
weight increased from 30 kg. The decrease in optimal gear ratio was
because the backdrive torque increased dramatically with the gear ratio
(Fig. 6(B)). In summary, we demonstrated the principle of determining
optimal exoskeleton design parameters for children of different weights
by minimizing the actuator weight and satisfying the requirements for
maximum torque, maximum speed, natural frequency, and backdrive
torque.

4. Deep learning based gait phase estimation

Robustness to abrupt changes in gait speed is imperative for the
efficacy of pediatric exoskeletons. Deep learning offers promise in
improving the performance of pediatric exoskeleton controllers [26,
30]. However, these algorithms have not been explored for use in
the pediatric population, especially in children with gait impairments
due to cerebral palsy. Instead, these approaches have been limited to
adults, prominently healthy individuals. Because the dominant motion
of healthy adults in the sagittal plane during walking was well cap-
tured by these algorithms (IMUs’ singles as inputs). Whereas children
7

with cerebral palsy often have non-sagittal plane movements, it re-
mains unknown as to whether deep learning algorithms for gait phase
determination from IMUs are effective in this population.

The gait phase is a continuous state variable that represents the
user’s movement during the gait cycle. This variable is defined as
a linearly increasing value between 0% and 100% (i.e., percentage
of the gait cycle). By estimating the gait phase of the exoskeleton
wearer in real-time, we can use the estimated gait phase 𝜑 to index
the biological torque profile to produce the reference torque command
in exoskeleton control. This study explored two state-of-the-art neural
network architectures to estimate the gait phase, indicative of gait
cycle progression and the onset of important gait events in typically
developing children and children with CP.

4.1. Kinematic data collection of children with cerebral palsy

Deep learning is primarily a supervised learning approach. Thus, it
relies on training datasets to map independent variables to dependent
variables. Thus, we conducted human subject experiments involving
one typically developing child and one child with CP to garner training
datasets and assess the feasibility of using deep learning methods for
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gait phase estimation in IMUs in the pediatric population. Force Sen-
sitive Resistors’ (FSR), commonly used in state-of-the-art Finite State
Machine (FSM) based controllers, were not used because the efficacy
of FSR’s is affected by irregular contact patterns commonly observed
in gait impairments and during community ambulation. Furthermore,
they are sensitive to placement locations and are prone to performance
degradation and failure over time [21,31]. Ground truth gait phases
were labeled based on left heel strike data computed from the motion
capture system for the typically developing child, whereas they were
manually annotated for the CP child. Lastly, typically developing child
experiments also yielded a test dataset of inertial signals representing
abrupt changes in gait, simulating community setting, and was used to
assess the effectiveness of trained models.

4.2. Deep neural network for robust gait phase estimation

A deep learning method was employed in this work called Long
Short Term Memory Neural Networks (LSTM) primarily due to their
inherent ability to extract features and capture historical events of
interest automatically. Besides, its capabilities to perform gait phase es-
timation on non-mobility-impaired adults have been proven in similar
works [25,32]. Thus, they facilitate an end-to-end learning paradigm
that eliminates the need for manual and laborious feature engineering
and the need for heuristic handcrafting of transition rules typically
commonplace in FSM-based controllers [31]. Additionally, they enable
stride-by-stride gait phase estimation and, thus, are more responsive
than existing controllers that average over the past few strides, further
improving stability.

4.2.1. LSTM-based gait phase estimator
LSTM networks are specifically designed to harness the under-

lying temporal relationship in sequential data effectively, as shown
in Fig. 7(A). Its recurrent nature enables it to capture significant
events from the input in the form of activation (short term), and
efficient gradient-based algorithms enforce steady error flow through
the network, resulting in accurate weight update (long term) [33].
This allows LSTM networks to capture nonlinear temporal relationships
prominent in non-steady locomotion observed in community settings
and individuals with gait impairment. The network consisted of 2 layers
with a hidden state dimension of 30 and Tanh activation function. A
dropout layer with 20% probability was added after each LSTM layer
to facilitate generalizability. Lastly, a fully connected layer with 30
neurons was used to output the gait phase.

The input data (i.e., knee angular velocity and knee angle) consist-
ing of raw inertial sensor data from the thigh, shank, and pelvis was
normalized and structured in a window of 100 ms for the typically
developing child and the child with CP with a step size of 1, and each
window had a dimension of 30. To avert data leakage, which affects
he validity of the trained network, the mean and standard deviation
sed to normalize training data were used to normalize the test data.
he models were allowed to train for a maximum of 1000 epochs.
owever, the early stoppage was implemented to stop training due to a

ack of improvement across multiple epochs and to prevent overfitting
o promote generalizability. A 0.01 learning rate was used to train
he models. The network weight and bias were updated using Root
ean Squared Error (RMSE) as the loss function and Adaptive moment

stimation (Adam) as the optimization algorithm. The number of layers,
idden layer dimension, and learning rate were tuned using k-fold
ross-validation (𝑘 = 10). Two sets of models were trained, one using
ypically developing child data and the other using CP child data. The
ypically developing child models were trained using 4 trials involving
ormal walking and were tested on trials involving abrupt changes in
ait speed. The performance of CP children’s models was evaluated via
-fold cross-validation to overcome the paucity of data yet assess a wide
rray of conditions. Secondarily, we also evaluated the accuracy of the
eave-one-out set based on trials to ensure the reproducibility of k-fold
alidation results. Lastly, the Pearson correlation coefficient was used
8

s the evaluation metric.
4.2.2. LSTM-based control strategy
The control strategy (as shown in Fig. 7(B)) in our pediatric ex-

oskeleton is hierarchical, including a high-level control to generate
assistive reference and a low-level control to track the torque reference.
Human knee angles 𝜃ℎ and angular velocity �̇�ℎ are measured by inertial
measurement units (IMUs), and these signals are used in our LSTM gait
phase estimator to estimate the gait phase percentage 𝜑 in real-time.
The estimated gait phase is used to index the biological torque profile
to produce the reference torque reference 𝜏𝑟:

𝜏𝑟 = 𝐴 ×𝑀𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙([𝜑]), 0 ≤ 𝜑 ≤ 100 (13)

where 𝐴 is the assistive toque gain (constant), 𝑀𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 is the normal-
ized biological knee joint moment.

4.3. State-of-the-art gait phase estimation methods

To understand and compare the effectiveness of our method and
different gait estimation methods under abrupt gait pause and CP chil-
dren’s abnormal gait, this subsection introduces another deep learning
method and a state-of-the-art none-machine-learning method: Convo-
lutional Neural Networks (CNN) and oscillator gait estimation method
[34,35].

4.3.1. CNN-based gait phase estimator
CNN is a regularized variant of a feed-forward neural network

that optimizes the extracted features by applying convolution to the
raw input signals during training. CNN is efficacious at automatically
extracting inherent features from sequential data. Notes that, although
CNN works well in estimating able-bodied gait phase, accurate and
stable gait phase estimation for children with cerebral palsy is also to
be explored. In this work, temporal relationships in sequential data,
such as kinematic gait recordings, can be extracted by treating time
as a spatial dimension. This architecture is known as 1D CNN, where
the network convolves input sequences to capture significant events of
interest across time. The network consisted of two 1D CNN layers with
a ReLU activation function, and each layer consisted of 128 filters with
a kernel size of 2. A max-pooling layer was added at the end of each
1D CNN layer to reduce the dimensions of the CNN layer and speed
up the training process. The output of the second 1D CNN layer was
flattened and fed to a fully connected layer with 50 neurons, which
estimated the gait phase. Rectified Linear Unit (ReLU) was used as an
activation function because various studies have established improved
performance compared to Tanh. However, ReLU is not suitable for
LSTM networks as the training may diverge due to large outputs.

4.3.2. Phase oscillator estimator
Phase oscillator estimator is a continuous gait phase measurement

method that is parameterized by a mechanical variable from a single
IMU sensing the human thigh motion. This method utilizes the relation-
ship between thigh angle and speed (i.e., the thigh phase portrait) to
construct the phase variable of the parameterized human gait cycle. As
only a single sensor is used, the phase oscillator Estimation method can
reduce the onboard calculation and equipment required to determine
the gait phase. However, it lacks the ability to predict the gait of
stopping and other mutations, and the effectiveness of this method in
the gait detection of CP children needs to be explored.

5. Experiments and evaluation results

We conducted exoskeleton and human experiments with two ob-
jectives. First, we systematically evaluated the performance of the
exoskeleton with the optimized actuator. Second, we acquired kine-
matic datasets necessary for training the deep learning models. One
child (male, 7 years old, 109 cm, 18.1 kg) with cerebral palsy (GMFCS
III), one typically developing child (female, 15 years old, 1.60 m,

51.3 kg), and four able-bodied adults (23.2 ± 2.8 years old, two
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females and two males, 52.3 ± 3.6 kg, similar weight with target
pediatric population) participated in our experiment. The experiments
involving children were approved by the Institutional Review Board of
the National Institutes of Health. The adult experiment was approved
by the Institutional Review Board of North Carolina State University.
All participants gave written informed consent prior to participation.

5.1. Evaluation of exoskeleton with optimized actuator

To evaluate the performance of the robot and ensure it satisfied our
four optimization constraints, we tested the bandwidth (amplitude =
16 N m), compliance, and velocity tracking (max velocity = 10.7 rad/s)
with our optimized pediatric exoskeleton. The results are shown in the
supplementary video. Our exoskeleton has high bandwidth (40.2 Hz)
for 16 N m torque magnitude, which is much higher than the state-of-
art exoskeleton with 12 Hz [10], and the actuator meets the required
output torque of actuator (15.6 N m for 45 kg). A higher bandwidth
indicates our exoskeleton can handle children’s highly dynamic daily
movements. The Root mean square backdrive torque is only 0.30 N m
in continuous 10 strides from a subject with the power-off exoskeleton
(walking speed 1.0 m/s), suggesting that it has high compliance and
does not restrict children’s motion. The RMS velocity tracking error
at 10.7 rad/s is 0.012 rad/s, meaning that our exoskeleton can accu-
rately track the desired angular velocity profile and satisfy the varying
walking speeds of children. Therefore, the systematic evaluation results
demonstrated our exoskeleton with the optimized actuator satisfied the
four optimization constraints well.

5.2. Evaluation of deep learning-based gait phase estimation

We recruited one typically developing child and one child with
cerebral palsy to garner a training dataset and assess the feasibility of
using deep learning methods for gait phase estimation in the pediatric
population. Both subjects walked over a 6-meter walkway for at least
4 trials without any constraints on walking speed. The experiment in-
volving the typically developing child included an additional condition
where the subject was asked to stop in the middle of the walkway
and resume walking to simulate the abrupt change in gait. Kinematic
data was captured using an inertial motion capture system (Noraxon
USA, Inc.). The 𝑍-axis of each shank IMU sensor is aligned with the
anteroposterior axis, and the 𝑍-axis of each thigh sensor is aligned
with the mediolateral axis. Lastly, one IMU sensor was attached to the
posterior side of the waist.

To evaluate the three gait phase methods in terms of LSTM, CNN,
and phase oscillator, the gathered data from this session was used in
the three algorithms to perform the gait phase estimation task and
assess their performance, as shown in Fig. 8. The evaluation primarily
focused on assessing the ability of the three methods to estimate the
gait phase given a sequence of data involving sudden pauses during
walking (typically developing child) and high irregularities in the gait
(child with CP). For deep learning models, the K-fold cross-validation
revealed a high accuracy of 97.31% for both LSTM and CNN models.

Fig. 8(A) illustrates the gait phase estimation results under a typi-
cally developed child walking with abrupt pauses. The estimated gait
phase of the LSTM model closely followed the actual gait phase with
a high correlation coefficient (𝑟) of 94.60%. The CNN network had
similar performance with a correlation coefficient (𝑟) of 94.51%. The
high accuracy, despite the presence of abrupt changes in gait speed
and pattern, highlights the feasibility of leveraging deep learning ap-
proaches for gait phase estimation in typically developing children.
Furthermore, the fact that the models were not trained explicitly using
data with abrupt changes yet had a high accuracy further highlights
the generalizability and robustness of these methods. In contrast, the
oscillator phase estimator (non-deep learning method) can accurately
estimate the gait when walking, but this method cannot predict a
9

Fig. 8. Comparison results of three gait phase estimation methods. (A) Typically
developing child with an abrupt pause. Deep learning methods (including both LSTM
and CNN) can accurately estimate the gait cycle when abrupt changes occur. The
estimated gait phase of LSTM and CNN closely followed the actual gait phase (ground
truth) with a high correlation coefficient (𝑟) of 94.60% and 94.51%, respectively. The
oscillator phase estimator can accurately estimate the gait when walking, but this
method performs about 450 ms gait estimation delay when abrupt changes occur
(𝑟 = 65.56%). (B) Child with cerebral palsy walking overground. High accuracy gait
phase estimation using LSTM compared to CNN in the child with cerebral palsy
exhibiting severe crouch gait (GMFCS III). LSTM (𝑟 = 96.75%) performed slightly better
than CNN (𝑟 = 95.12%). In contrast, the oscillator phase estimator failed to estimate
this child’s gait phase (𝑟 = 31.89%).

sudden stop immediately and performs about 450-millisecond gait
estimation delay when abrupt changes occur (resulting in 𝑟 = 65.56%).

Fig. 8(B) shows the gait phase estimation results under a CP child
overground walking. Regardless of severe gait impairment (GMFCS III)
necessitating the use of a walking aid that resulted in highly varying
gait patterns, the gait phase estimated by the LSTM model closely
followed the actual gait phase (𝑟 = 95.35%), whereas the performance
of the CNN model was comparatively higher (𝑟 = 97.60%). On the
contrary, the accuracy of models on leave-one out of the set (train:4
trials, test:1 trial) showed that LSTM (𝑟 = 96.75%) performed slightly
better than CNN (𝑟 = 95.12%). Lastly, these models are insensitive to
the absolute value of the acceleration and velocity, and thus, minor
misalignment between the IMU sensors and the human joint is toler-
able. These results highlight the feasibility of deploying the trained
models in real-time, which can be further simplified and accelerated
through specialized packages such as MCUNet for microcontroller units.
In contrast, the oscillator phase estimator failed to estimate this child’s
gait phase (𝑟 = 31.89%). The thigh angular velocity of the CP child
has extra unnatural waves in a gait cycle, which mistakenly causes the
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Fig. 9. (A) Kinematics and kinetics results. The exoskeleton demonstrated high compli-
ance to movements with 94.7% similarity between maximum knee flexion angles during
powered and baseline mode. Lastly, the low mass of the exoskeleton led to negligible
effect on the user’s kinetics as GRF during baseline and powered walking was 99.7%.
(B) Torque tracking under different walking speeds. Our pediatric exoskeleton, using
the optimized actuator, generated assistive torque with high accuracy (RMS error only
3.0%–4.6% of peak torque for 0.5–2.0 m/s walking speeds).

phase generated by the oscillator estimator to enter a new gait cycle.
Therefore, these results demonstrated that deep learning methods can
facilitate stable control for community use.

5.3. Human subject experiments

The human subject experiments aimed to evaluate the kinematics
and kinetics impact of the exoskeleton during walking. Kinematics
and kinetics were collected during continuous gait cycles from the
typically developing child and four adult subjects (Fig. 9(A)). The
kinematic observation (knee angles) illustrates that our lightweight
pediatric exoskeleton induced minor changes in knee angle, which
highlights the negligible exoskeleton mass penalty. The maximum knee
flexion angle decreased by only 2.5 degrees during powered and base-
line conditions (Pearson correlation coefficient = 0.947 ± 0.036). The
maximum assistive torque generated by the exoskeleton is 7.5 N m
for the child and 9.4 N m for adult subjects. Furthermore, we also
analyzed the effect on the vertical ground reaction force (GRF) during
walking. The mean GRF was lowered by only 0.17% during unpowered
mode, whereas it increased by 4.4% during powered mode compared
to baseline. The correlation between unpowered and baseline GRF was
98.93% and 99.7% between baseline and powered conditions. The
negligible exoskeleton mass penalty on the kinematics and kinetics of
the user highlights the efficacy of the exoskeleton with the optimized
actuator. In the torque tracking experiments, subjects wore the powered
pediatric knee exoskeleton and walked on a treadmill. Fig. 9(B) shows
the accurate torque tracking of our exoskeleton under four different
walking speeds (0.5 m/s, 1.0 m/s, 1.5 m/s, and 2.0 m/s). The torque
10
tracking errors are only 4.6% (RMS error 0.53 ± 0.01 N m) at 0.5 m/s,
3.0% (RMS error 0.29 ± 0.01 N m) at 1.0 m/s, 3.7% (RMS error
0.44± 0.01 N m) at 1.5 m/s, and 3.9% (RMS error 0.45± 0.03) at 2.0 m/s.
The torque error percentage is calculated by RMS error over the peak
torque of desired torque 𝜏𝑑,𝑝, i.e.,

Error = 1
𝜏𝑑,𝑝

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝜏𝑎(𝑖) − 𝜏𝑑 (𝑖))2 × 100%. (14)

Therefore, the high torque tracking accuracy indicates synergistic
control, demonstrating the ability to handle uncertainty due to variable
walking speed.

6. Discussion and conclusion

We addressed hardware and control design challenges in pediatric
exoskeletons tailored specifically for use in community settings. We
proposed an optimization framework to enable a lightweight actua-
tor design that satisfies the multifaceted requirements. In addition,
we studied the feasibility of two deep learning methods for robust
gait phase estimation for exoskeleton control in both typically devel-
oping children and children with cerebral palsy. The benchtop and
human subject experiments involving the pediatric population char-
acterized the effectiveness of our knee exoskeleton and demonstrated
the functionality of our controller. Our results showed high compli-
ance and accurate gait phase estimation and torque tracking in an
adolescent-aged child. These features indicate the optimized exoskele-
ton is well-suited to alleviate excessive knee flexion in children with
CP. Future studies will investigate our hypothesis that the optimized
exoskeleton can increase the knee joint range of motion of children of
CP with crouch gait to facilitate upright posture during walking. Future
work will also include analysis of the exoskeleton margin of stability, as
well as the dynamic stability of the user’s gait during its use to support
eventual use outside the clinical environment.
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